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1. APPROACH

The singular points of intensity streamlines in a steady axisymmetric sound "eld are
considered, extending earlier work [1] for the xy plane. Cylindrical polar co-
ordinates r, h, z are used, with the z-axis taken as the axis of symmetry. The pressure
and velocity (and hence intensity) components are independent of h, and there is no
component, and hence no intensity component, in the h direction.

On any plane h"constant, the r and z components of the acoustic intensity
vector are given by
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The di!erential equation of the intensity streamlines is given by
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As in the xy plane case, only isolated singular points in the rz plane are
considered, and it is assumed that
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a Stokes stream function t(r, z) exists [2] and
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The level curves of t and the streamlines correspond, while the critical points of
t and the singular points of the streamlines correspond.

Although equations (4) and (5) look quite di!erent from those obtained for the xy
plane case, similar results are found by using essentially the same procedure. A brief
description follows. For any region r'0, the intensity streamlines can be written as

dz
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from equation (5) where the factors 1/r have been cancelled from the denominator
and numerator. Equations (2) and (6) are of the same from as those for the xy plane
case, and similar results follow [1].

The singular point is a saddle point and the critical point of t is a saddle point if

(det J )
0
(0. (7)

The singular point is a vortex point and the critical point of t is a relative
extremum if

(det J)
0
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By using the above equation and a procedure similar to that used in the xy plane
case [1], it can be shown that (1) an isolated zero of pressure is a vortex point, (2) an
isolated zero of velocity is a saddle point, and (3) an isolated point where the phases
of pressure and velocity di!er by an odd multiple of n/2 is a saddle point.

The classi"cation of the singular points on the z-axis is simpli"ed for the
following reasons. By symmetry the vorticity is zero on the z-axis and so a singular
point cannot be a vortex point. Further, the criterion for a saddle point does not
depend on the existence of a stream function, while that for a vortex point does
[3, 4]. Equation (7) expressed in terms of the intensity components, or results (2) or
(3) above, can be applied to show that a singular point is a saddle point.

As in the xy plane case, a saddle point is not necessarily a zero of velocity.
Relating these results on the rz plane to the actual three-dimensional sound "eld,
the isolated vortex point at r

0
'0 is the cross-section of a circle of such points,

centered on the z-axis, and so is the saddle point [5]. The only isolated singular
points in the space are the saddle points on the z-axis.

2. AXISYMMETRIC SOUND FIELD OF TWO MONOPOLES

The axisymmetric sound "eld produced by two discrete monopole sources on the
z-axis is now considered. The location of, and the condition for, a vortex, can be
determined by the above theory. Figure 1 shows the geometry. The pressures at
P for the sources S

1
and S

2
are given by
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Figure 1. Co-ordinate system used, with monopole sources at S
1

and S
2
, a distance d apart.
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where the Qs are the strengths of the sources, d is the relative phase, and

a"[r2#(z!d)2]1@2, b"[r2#z2]1@2.

The intensity is calculated by using the superposition of the pressures and velocities
of the two sources. The di!erential equation of the streamlines can be written in
parametric form, with arc length s the parameter, as

dr
ds

"cos b,
dz
ds

"sin b, (9)

where tan b"Z/R.
The streamlines can be plotted by integrating equation (9) using a fourth order

Runge}Kutta method, for di!erent initial points. This scheme is used to show the
streamline pattern near all the singularities, which may be di$cult to achieve using
equal energy streamlines.

2.1. LOCATION OF A VORTEX IN THE rz PLANE

It is assumed that Q
2
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1
'0. Using the condition p(r

0
, z

0
)"0, and writing in

terms of the real and imaginary components we have
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These can be viewed as two simultaneous equations for Q
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. For non-zero
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and
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n is chosen so that a and b are positive, and a particular set of a, b and d obey the
geometric requirement of triangular inequality. r

0
and z

0
are then given by

cos /"(d2#b2!a2)/2da, r
0
"b sin /, z

0
"b cos /.

2.2. EXAMPLES

The "rst example is that considered by Waterhouse et al. [6] where the source S
1

is just extinguished by S
2
, with the values f"1000 Hz, Q

2
/Q

1
"5, d"5/k,

d"!(5#n/2).
Figure 2. Intensity vector and streamline "eld for 2 sources, where f"1000 Hz, Q
2
/Q

1
"5,

d"!(5#n/2), kd"5.
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The location of the vortex can be determined, with n"!1, by ka"(5!n/2)/4
and kb"5(5!n/2)/4, yielding r

0
"0)0769, z

0
"0)746.

Choosing n"!2, for example, does not give a physically possible solution.
Actual calculation on the z-axis shows the pressure and velocity to be in quadrature
and the intensity to vanish at z

0
K0)68 and K0)8. These are saddle points.

Figure 2 shows a vector intensity and streamline plot, and is consistent with the
nature of the singular points determined above. It also appears to be consistent
with the results of reference [6].

The second example uses the values f"1000 Hz, Q
2
/Q

1
"5, d"4/k, d"0.

A vortex point is found at r
0
"0)135, z

0
"0)674. Calculation on the z-axis shows

the pressure and velocity to be in quadrature, and the intensity to vanish at
zK0)52, K0)71 & K0)85, which are saddle points. Figure 3 shows a vector
intensity and streamline plot, which is consistent with the singular points
determined above.

3. DISCUSSION

These examples show that a vortex can form in an unbounded space irradiated
by two point sources under quite general conditions. It is not necessary to have
three sources, as has been suggested [7].
Figure 3. Like Figure 2, except that d"0, and kd"4.



936 LETTERS TO THE EDITOR
The concept of the index of a closed curve can help to decide if all the singular
points have been found. In the second example above, consider the streamlines in
Figure 3.

Draw a closed curve around almost all of Figure 3 and its re#ection in the z-axis.
It is easy to see that the index of the curve is #1. The sum of the indices of the
singular points enclosed (one vortex and its re#ection, three saddle points, and two
sources or nodes) add up to #1 also, in agreement, an indication that all the
singular points have been found.

In the case of the "rst example, there are only two saddle points. However, here
one source is just extinguished by the other, so its power output is zero, and it has
ceased to be a source, e!ectively. Thus, only one source should be counted, not two.
Then the algebraic sum of the indices of the singular points and the index of the
enclosing curve both equal#1.

Figures 4 and 5 show the radial intensity pattern, normalized to a source of
strength Q

2
at the origin, for the "rst and second example, for kRM values of 50, 100

and 200, where RM is the distance from the origin. These "gures, together with the
previous ones, show that the vortex a!ects the far"eld intensity pattern. The area
a!ected by the vortex in the second example appears to be larger than in the "rst
example, and a larger proportion of energy propagates in the r direction in the
second example.
Figure 4. Radial intensity normalized to that of a source of strength Q
2

at the origin, versus polar
angle /. Q

2
/Q

1
"5, d"!(5#n/2), kd"5. Curves are for kRM "50, 100 and 200.



Figure 5. Like Figure 4, except that d"0 and kd"4.
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